RP-Energie-Lexikon
fachlich fundiert, unabhängig von Lobby-Interessen
www.energie-lexikon.info

Clausius-Rankine-Kreisprozess

Definition: ein thermodynamischer Kreisprozess, der das Grundprinzip von Dampfturbinen und Dampfmaschinen beschreibt

Englisch: Clausius Rankine cycle

Kategorien: Kraftmaschinen und Kraftwerke, physikalische Grundlagen

Autor: Dr. Rüdiger Paschotta (G+)

Wie man zitiert; zusätzliche Literatur vorschlagen

Ursprüngliche Erstellung: 20.12.2014; letzte Änderung: 03.11.2018

Der Clausius-Rankine-Kreisprozess ist ein vereinfachtes thermodynamisches Modell für geschlossene Kreisprozesse, wie sie in Dampfturbinen und Dampfmaschinen technisch realisiert werden. Es wurde benannt nach dem deutschen Physiker Rudolf Julius Emanuel Clausius und dem schottischen Ingenieur William John Macquorn Rankine und spielte eine wesentliche Rolle bei der Bemühung, die thermodynamischen Grundlagen und die prinzipiellen Begrenzungen des Wirkungsgrads von Dampfturbinen zu verstehen.

Allgemein spricht man von einem thermodynamischen Kreisprozess, wenn ein Arbeitsmedium wie beispielsweise Wasser in einer Maschine oder Anlage eine Reihe von Zustandsänderungen (beispielsweise Änderungen von Temperatur, Druck und Aggregatszustand) durchläuft, die sich periodisch (also immer gleich) wiederholen. Man betrachtet dabei also eine Maschine oder Anlage, die im stationären Zustand arbeitet, d. h. sich unter konstanten äußeren Bedingungen in etlichen Zyklen auf diese eingestellt hat. Ein geschlossener Kreisprozess liegt vor, wenn es im Betrieb keinen stofflichen Austausch des Arbeitsmediums mit der Umgebung gibt. Dies ist bei Dampfturbinenanlagen in der Regel der Fall, zum Teil auch bei Dampfmaschinen, in der Regel nicht aber bei Gasturbinen.

Grundlegend geht es beim Clausius-Rankine-Kreisprozess um die Realisierung einer Wärmekraftmaschine, die also Wärme zum Teil in mechanische Energie umwandelt. Zum fundamentalen Prinzip gehört, dass das Arbeitsmedium abwechselnd komprimiert und expandiert wird, wobei die Bedingungen so eingestellt werden, dass man zur Kompression weniger mechanische Arbeit leisten muss, als das Medium bei der Expansion leistet. Dies bedeutet, dass in einem gesamten Zyklus der Maschine mechanische Energie übrig bleibt, die als Nutzenergie entnommen werden kann. Beim Clausius-Rankine-Kreisprozess verwendet man ein Arbeitsmedium wie Wasser, welches beim Prozess abwechselnd in flüssiger und gasförmiger Phase vorhanden ist.

Die vier Schritte des Clausius-Rankine-Kreisprozesses

Der Clausius-Rankine-Kreisprozess kann folgendermaßen beschrieben werden:

Dampfturbinenanlage
Abbildung 1: Schematische Darstellung einer Maschine, die den Clausius-Rankine-Kreisprozess nutzt.

Analyse des Kreisprozesses; erreichbarer Wirkungsgrad

Der Prozess kann nun quantitativ analysiert werden, wobei die physikalischen Eigenschaften des Arbeitsmediums (Zustandsgleichungen und Verdampfungs- bzw. Kondensationsenthalpie) zu berücksichtigen sind. Aus den Resultaten kann der Wirkungsgrad der mit diesem Kreisprozess arbeitenden Maschine abgeschätzt werden, wobei allerdings wegen diverser Vereinfachungen (Idealisierungen) Abweichungen auftreten; eine reale Maschine ist etwas weniger effizient als Folge zusätzlicher Strömungsdruckverluste (Reibungsverluste), Undichtigkeiten, unerwünschter Wärmeleitung usw., die im theoretischen Modell nicht berücksichtigt werden.

Der berechnete Wirkungsgrad ist umso höher, je höher die Temperatur des erzeugten Dampfs ist und je stärker das Medium expandiert werden kann. Die mögliche Stärke der Expansion wird umso größer, je niedriger die Temperatur ist, bei der die Abwärme abgeführt werden kann. Der Wirkungsgrad kann den sogenannten Carnot-Wirkungsgrad prinzipiell nicht übertreffen und bleibt in der Tat sogar deutlich unter diesem; beispielsweise berechnet man für eine Dampftemperatur von 400 °C und die Kondensation bei 25 °C einen Wirkungsgrad von 39,5 %, während der Carnot-Wirkungsgrad 55,7 % wäre.

Der geringere Wirkungsgrad rührt daher, dass der Clausius-Rankine-Kreisprozess thermodynamisch nicht optimal ist. Insbesondere ist es nicht optimal, für die Erwärmung des Arbeitsmediums ausschließlich die von außen zugeführte Wärme zu verwenden. Es wäre effizienter, für die Erwärmung auf niedrigem Temperaturniveau zunächst Entnahmedampf aus der Turbine einzusetzen, was in heutigen Kraftwerken auch so praktiziert wird. Ebenfalls ist heute eine sogenannte Zwischenüberhitzung des Dampfs zwischen den Turbinenstufen üblich, was ebenfalls den Wirkungsgrad verbessert und außerdem die letzte Turbinenstufe schont. Solche Maßnahmen werden als Carnotisierung bezeichnet, weil sie den Wirkungsgrad dem idealen Carnot-Wirkungsgrad näher bringen.

In den allermeisten Fällen wird Wasser als Arbeitsmedium verwendet – beispielsweise in fast allen Dampfturbinen-Kraftwerken. Wenn allerdings nur eine Wärmequelle mit relativ niedriger Temperatur zur Verfügung steht, sind die thermodynamischen Eigenschaften von Wasser nicht optimal oder machen dieses sogar völlig ungeeignet. In solchen Fällen setzt man manchmal organische Arbeitsmedien mit wesentlich niedrigerem Siedepunkt ein und spricht bei diesem modifizierten Verfahren dann vom Organic Rankine Cycle.

Siehe auch: Thermodynamik, Dampfturbine, Dampfmaschine, Wirkungsgrad
sowie andere Artikel in den Kategorien Kraftmaschinen und Kraftwerke, physikalische Grundlagen

Teilen Sie den Link auf diesen Artikel mit anderen: